Local-to-global Results in Variable Exponent Spaces

نویسندگان

  • Peter A. Hästö
  • PETER A. HÄSTÖ
چکیده

In this article a new method for moving from local to global results in variable exponent function spaces is presented. Several applications of the method are also given: Sobolev and trace embeddings; variable Riesz potential estimates; and maximal function inequalities in Morrey spaces are derived for unbounded domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

On Variable Exponent Amalgam Spaces

We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...

متن کامل

Poincaré-type Inequality for Variable Exponent Spaces of Differential Forms

We prove both local and global Poincaré inequalities with the variable exponent for differential forms in the John domains and s L -averaging domains, which can be considered as generalizations of the existing versions of Poincaré inequalities.

متن کامل

Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces ∗

We prove optimal integrability results for solutions of the p(·)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L to variable exponent weak Lebesgue spaces.

متن کامل

The Wavelet Characterization of Herz-type Hardy Spaces with Variable Exponent

In this paper, using the atomic theory of the Herz-type Hardy spaces with variable exponent, we give their wavelet characterization by means of some discrete tent spaces with variable exponent at the origin.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009